LOWPT RESULTS: 12.7 FB-1 #### Lina Galtieri for the lowpT Group For Njet = 0 will show: Blinded cutflows and plots for events with a Sublead lepton in the $P_T = 10-15$ GeV range Blinded Signal Region and WW Control Region distributions ## $\Delta\Phi_{II}$, M_{T} , M_{II} in blinded SR #### Blinded Signal region (Dphill<1.8) eμ (top), μe (bottom) Expect 32 Observe 35 R=1.07 \pm 0.21 Expect 44 Observe 41 R=0.93±0.15 No Excess is observed ## CUTFLOW eμ, μe, eμ+eμ LOWPT 2012 DATA 12.7fb⁻¹ CutWWCR80 $(e\mu)$ | wieczy www. | Signal [125 GeV] | WW | $WZ/ZZ/W\gamma$ | tī | Single Top | Z+jets | W+jets | Total Bkg. | Observed | Data/MC | |---|----------------------------------|--------------------------------|--------------------------|-----------------------------|-------------------------------|-----------------------|-------------------------------------|----------------------|----------|----------------------| | blinding | 138.47 ± 1.15 | 3258.67 ± 10.51 | 1352.02 ± 14.27 | 17720.87 ± 49.05 | 1794.17 ± 20.65 | 11398.36 ± 51.26 | 2523.02 ± 17.05 | 38047.11 ± 77.87 | 38066 | 1.00 ± 0.01 | | lepton pr | 21.04 ± 0.41 | 159.02 ± 2.32 | 235.64 ± 5.71 | 937.46 ± 11.27 | 92.13 ± 4.80 | 2282.45 ± 21.63 | 817.95 士 7.05 | 4524.66 ± 26.57 | 4246 | 0.94 ± 0.02 | | OS leptons | 20.61 ± 0.39 | 158.29 ± 2.32 | 108.66 ± 3.96 | 934.91 ± 11.26 | 88.93 ± 4.59 | 2249.18 ± 19.93 | 508.76 ± 5.83 | 4048.73 ± 24.50 | 3909 | 0.97 ± 0.02 | | m _{ℓℓ} > 12, 10 GeV
Scale factors | 20.27 ± 0.39 | 157.46 ± 2.31
NF = 0.81 | 101.44 ± 3.83 | 931.46 ± 11.24
NF = 1.04 | 88.73 ± 4.58 NF = 1.04 | 2246.39 ± 19.93 | 501.84 ± 5.79 | 4027.32 ± 24.45 | 3887 | 0.97 ± 0.02 | | Z veto (for ee, μμ)
Scale factors | 20.27 ± 0.39 | 128.07 ± 1.88
NF = 0.81 | 101.44 ± 3.83 | 964.63 ± 11.64
NF = 1.04 | 91.89 ± 4.74
NF = 1.04 | 2246.39 ± 19.93 | 501.84 ± 5.79 | 4034.26 ± 24.63 | 3887 | 0.96 ± 0.02 | | $E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45,25~\mathrm{GeV}$ | 10.02 ± 0.28 | 72.96 ± 1.42 | 43.06 ± 2.63 | 632.27 ± 9.42 | 64.37 ± 3.93 | 348.09 ± 7.43 | 120.06 ± 2.96 | 1280.81 ± 13.30 | 1161 | 0.91 ± 0.03 | | Z validation region (incl) | 20.27 ± 0.39 | 157.46 ± 2.31 | 101.44 ± 3.83 | 931.46 ± 11.24 | 88.73 ± 4.58 | 2246.39 ± 19.93 | 501.84 ± 5.79 | 4027.32 ± 24.45 | 3887 | 0.97 ± 0.02 | | Top validation region (incl) | 1.24 ± 0.11 | 6.57 ± 0.51 | 2.23 ± 0.54 | 539.64 ± 8.56 | 45.13 ± 3.19 | 23.35 ± 1.59 | 20.83 ± 1.69 | 637.76 ± 9.46 | 642 | 1.01 ± 0.04 | | Scale factors | \$10,000,000 at 10,000 at 10,000 | NF = 0.81 | The second of the second | NF = 0.87 | NF = 0.87 | E VENEZA E POR ESTADA | Value of the control of the control | | T was | ACTION OF CONTRACTOR | | 0j: jet veto
0j: $\Delta \phi_{\ell\ell,MET} > 1.57$ | 5.08 ± 0.20 | 44.39 ± 1.11 | 30.95 ± 2.42 | 9.95 ± 1.07 | 5.60 ± 1.08 | 219.98 ± 6.66 | 70.18 ± 2.00 | 381.06 ± 7.60 | 324 | 0.85 ± 0.05 | | 0j: PT. ee >45,30 GeV | 4.05 ± 0.18 | 37.02 ± 1.01 | 23.79 ± 2.09 | 8.63 ± 1.01 | 4.81 ± 1.01 | 20.72 ± 2.81 | 43.70 ± 1.46 | 138.67 ± 4.18 | 145 | 1.05 ± 0.09 | | 0j: mee < 50 GeV | 2.99 ± 0.15 | 12.18 ± 0.58 | 16.46 ± 1.74 | 3.50 ± 0.67 | 0.53 ± 0.40 | 12.00 ± 2.56 | 17.10 ± 0.94 | 61.77 ± 3.38 | 62 | 1.00 ± 0.14 | | 0j: Δφρ < 1.8 | 1.87 ± 0.13 | 7.72 ± 0.46 | 13.20 ± 1.58 | 3.04 ± 0.62 | 0.32 ± 0.34 | 2.64 ± 2.26 | 5.68 ± 0.57 | 32.60 ± 2.94 | 35 | 1.07 ± 0.21 | | 0j: 0.75 · mH < mT < mH | | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0 | nan ± nan | | 0j: Z validation region | 9.70 ± 0.27 | 99.00 ± 1.84 | 65.73 ± 3.36 | 15.13 ± 1.41 | 7.11 ± 1.33 | 1599.01 ± 18.06 | 282.45 ± 4.23 | 2068.43 ± 19.04 | 2005 | 0.97 ± 0.02 | | 0j: WW control region | 0.01 ± 0.01 | 12.26 ± 0.65 | 2.60 ± 0.76 | 2.49 ± 0.52 | 2.08 ± 0.60 | 0.34 ± 0.26 | 7.19 ± 0.87 | 26.96 ± 1.43 | 23 | 0.85 ± 0.18 | LOWPT 2012 DATA 12.7 fb $^{-1}$ CutWWCR80 (μe) | | Signal 125 GeV | ww | $WZ/ZZ/W\gamma$ | tī | Single Top | Z+jets | W + jets | Total Bkg. | Observed | Data/MC | |---|------------------|--|---------------------|---------------------------------|-------------------------------|----------------------|---------------------|---------------------|----------|-----------------| | blinding | 119.01 ± 1.11 | 2965.50 ± 10.01 | 1481.56 ± 15.37 | 15499.90 ± 45.78 | 1584.67 ± 19.47 | 11165.81 ± 61.93 | 1936.12 ± 10.79 | 34633.57 ± 82.24 | 34925 | 1.01 ± 0.01 | | lepton p _T | 18.44 ± 0.41 | 136.86 ± 2.12 | 393.97 ± 8.35 | 752.47 ± 9.97 | 82.21 ± 4.70 | 2300.32 ± 22.61 | 763.98 ± 5.53 | 4429.81 ± 27.16 | 4418 | 1.00 ± 0.02 | | OS leptons | 17.85 ± 0.37 | 136.65 ± 2.12 | 167.11 ± 5.28 | 748.99 ± 9.95 | 77.73 ± 4.39 | 2252.36 ± 20.38 | 459.21 ± 4.76 | 3842.06 ± 24.26 | 3956 | 1.03 ± 0.02 | | m _{ℓℓ} > 12, 10 GeV
Scale factors | 17.31 ± 0.37 | 135.52 ± 2.11
NF = 0.81 | 147.77 ± 4.88 | 745.81 ± 9.93
NF = 1.04 | 77.73 ± 4.39 NF = 1.04 | 2250.12 ± 20.37 | 452.32 ± 4.73 | 3809.27 ± 24.16 | 3927 | 1.03 ± 0.02 | | Z veto (for $ee, \mu\mu$)
Scale factors | 17.31 ± 0.37 | 110.23 ± 1.72
NF = 0.81 | 147.77 ± 4.88 | 772.38 ± 10.28
NF = 1.04 | 80.50 ± 4.55
NF = 1.04 | 2250.12 ± 20.37 | 452.32 ± 4.73 | 3813.30 ± 24.30 | 3927 | 1.03 ± 0.02 | | $E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45,25~\mathrm{GeV}$ | 8.52 ± 0.26 | 64.00 ± 1.30 | 64.21 ± 3.06 | 501.57 ± 8.23 | 54.98 ± 3.86 | 353.93 ± 8.00 | 154.87 ± 2.16 | 1193.55 ± 12.75 | 1108 | 0.93 ± 0.03 | | Z validation region (incl) | 17.31 ± 0.37 | 135.52 ± 2.11 | 147.77 ± 4.88 | 745.81 ± 9.93 | 77.73 ± 4.39 | 2250.12 ± 20.37 | 452.32 ± 4.73 | 3809.27 ± 24.16 | 3927 | 1.03 ± 0.02 | | Top validation region (incl) | 1.00 ± 0.10 | 5.59 ± 0.45 | 2.56 ± 0.45 | 428.92 ± 7.49 | 39.80 ± 3.16 | 21.69 ± 2.98 | 13.17 ± 0.93 | 511.72 ± 8.73 | 545 | 1.07 ± 0.05 | | Scale factors
0j: jet veto | 4.40 ± 0.17 | $\frac{NF}{39.77} = \frac{0.81}{1.03}$ | 48.59 ± 2.84 | NF = 0.87
6.50 \pm 0.80 | $NF = 0.87$ 3.80 ± 1.13 | 230.57 ± 6.79 | 107.33 ± 1.55 | 436.56 ± 7.72 | 379 | 0.87 ± 0.05 | | 0j: $\Delta \phi_{\ell\ell,MET} > 1.57$
0j: $p_{T,\ell\ell} > 45,30 \text{ GeV}$ | 3.50 ± 0.15 | 32.36 ± 0.93 | 36.89 ± 2.49 | 6.05 ± 0.76 | 2.96 ± 0.98 | 17.97 ± 1.74 | 76.01 ± 1.08 | 172.23 ± 3.58 | 166 | 0.96 ± 0.08 | | 0j: mpg < 50 GeV | 2.61 ± 0.13 | 11.92 ± 0.57 | 25.72 ± 2.11 | 2.22 ± 0.50 | 1.00 ± 0.40 | 10.24 ± 1.23 | 29.14 ± 0.67 | 80.24 ± 2.67 | 70 | 0.87 ± 0.11 | | 0j: Δφρ < 1.8 | 1.54 ± 0.10 | 7.95 ± 0.46 | 22.23 ± 2.00 | 1.97 ± 0.48 | 0.96 ± 0.40 | 0.70 ± 0.21 | 10.17 ± 0.41 | 43.99 ± 2.19 | 41 | 0.93 ± 0.15 | | 0j: 0.75 · mH < mT < mH | 0.00 ± 0.00 | 0.00 ± 0.00 0 | nan ± nan | | 0j: Z validation region | 8.43 ± 0.24 | 86.69 ± 1.69 | 102.03 ± 4.34 | 10.28 ± 1.07 | 5.62 ± 1.39 | 1647.84 ± 18.68 | 265.83 ± 3.35 | 2118.29 ± 19.62 | 2204 | 1.04 ± 0.02 | | 0j: WW control region | 0.02 ± 0.02 | 9.59 ± 0.56 | 4.37 ± 0.93 | 1.42 ± 0.36 | 1.38 ± 0.80 | 0.78 ± 0.78 | 16.58 ± 0.46 | 34.12 ± 1.66 | 34 | 1.00 ± 0.18 | LOWPT 2012 DATA $12.7 \mathrm{fb^{-1}}$ CutWWCR80 $(e\mu + \mu e)$ | Manager No. | Signal [125 GeV] | ww | $WZ/ZZ/W\gamma$ | tī | Single Top | Z+jets | W+jets | Total Bkg. | Observed | Data/MC | |--|------------------|---------------------|---------------------|----------------------|---------------------|----------------------|--------------------|---------------------|----------|-----------------| | blinding | 257.48 ± 1.60 | 6224.17 ± 14.51 | 2833.58 ± 20.97 | 33220.77 ± 67.10 | 3378.85 ± 28.38 | 22564.17 ± 80.39 | 4459.15 ± 20.17 | 72680.68 ± 113.26 | 72991 | 1.00 ± 0.00 | | lepton PT | 39.47 ± 0.58 | 295.88 ± 3.14 | 629.61 ± 10.12 | 1689.93 ± 15.05 | 174.34 ± 6.72 | 4582.77 ± 31.29 | 1581.92 ± 8.96 | 8954.46 ± 37.99 | 8664 | 0.97 ± 0.01 | | OS leptons | 38.46 ± 0.54 | 294.94 ± 3.14 | 275.77 ± 6.60 | 1683.90 ± 15.02 | 166.66 ± 6.35 | 4501.54 ± 28.51 | 967.97 ± 7.53 | 7890.79 ± 34.48 | 7865 | 1.00 ± 0.01 | | $m_{\ell\ell} > 12, 10 \text{ GeV}$
Scale factors | 37.57 ± 0.53 | 292.99 ± 3.13 | 249.21 ± 6.20 | 1677.27 ± 15.00 | 166.46 ± 6.35 | 4496.51 ± 28.50 | 954.15 ± 7.48 | 7836.58 ± 34.37 | 7814 | 1.00 ± 0.01 | | Z veto (for ee, μμ) | 37.57 ± 0.53 | 238.30 ± 2.55 | 249.21 ± 6.20 | 1737.01 ± 15.53 | 172.39 ± 6.57 | 4496.51 ± 28.50 | 954.15 ± 7.48 | 7847.56 ± 34.60 | 7814 | 1.00 ± 0.01 | | Scale factors | | | | | | | | | 0.0000 | | | $E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45, 25~\mathrm{GeV}$ | 18.54 ± 0.38 | 136.96 ± 1.92 | 107.27 ± 4.04 | 1133.84 ± 12.51 | 119.35 ± 5.51 | 702.02 ± 10.92 | 274.93 ± 3.67 | 2474.37 ± 18.43 | 2269 | 0.92 ± 0.02 | | Z validation region (incl) | 37.57 ± 0.53 | 292.99 ± 3.13 | 249.21 ± 6.20 | 1677.27 ± 15.00 | 166.46 ± 6.35 | 4496.51 ± 28.50 | 954.15 ± 7.48 | 7836.58 ± 34.37 | 7814 | 1.00 ± 0.01 | | Top validation region (incl) | 2.24 ± 0.14 | 12.16 ± 0.68 | 4.79 ± 0.70 | 968.56 ± 11.37 | 84.93 ± 4.49 | 45.04 ± 3.38 | 34.01 ± 1.93 | 1149.48 ± 12.87 | 1187 | 1.03 ± 0.03 | | Scale factors | 9.47 ± 0.26 | 84.16 ± 1.51 | 79.54 ± 3.73 | 16.45 ± 1.34 | 9.41 ± 1.57 | 450.55 ± 9.51 | 177.52 ± 2.53 | 817.62 ± 10.83 | mon | 0.86 ± 0.03 | | Oj: jet veto | 9.47 ± 0.26 | 84.16 ± 1.51 | 19.54 ± 5.15 | 16.45 ± 1.34 | 9.41 ± 1.57 | 450.55 ± 9.51 | 177.52 ± 2.53 | 817.62 ± 10.85 | 703 | 0.86 ± 0.03 | | 0j: $\Delta \phi_{\ell\ell}, MET > 1.57$ | 7.54 ± 0.23 | 69.38 ± 1.37 | 60.67 ± 3.25 | 14.68 ± 1.27 | 7.77 ± 1.41 | 38.69 ± 3.31 | 119.71 ± 1.82 | 310.89 ± 5.50 | 311 | 1.00 ± 0.06 | | 0j: PT, (1 > 45,30 GeV | | | | | | | | | 20000000 | | | 0j: $m_{\ell\ell} < 50~{ m GeV}$ | 5.60 ± 0.20 | 24.10 ± 0.81 | 42.18 ± 2.73 | 5.73 ± 0.84 | 1.53 ± 0.57 | 22.24 ± 2.84 | 46.24 ± 1.15 | 142.01 ± 4.31 | 132 | 0.93 ± 0.09 | | 0j: Δφερ < 1.8 | 3.41 ± 0.16 | 15.67 ± 0.65 | 35.44 ± 2.55 | 5.00 ± 0.79 | 1.28 ± 0.53 | 3.34 ± 2.27 | 15.85 ± 0.70 | 76.59 ± 3.67 | 76 | 0.99 ± 0.12 | | 0j: $0.75 \cdot m_{\rm H} < m_{\rm T} < m_{\rm H}$ | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0 | nan ± nan | | 0j: Z validation region | 18.13 ± 0.36 | 185.70 ± 2.49 | 167.76 ± 5.49 | 25.41 ± 1.77 | 12.73 ± 1.92 | 3246.84 ± 25.99 | 548.27 ± 5.40 | 4186.72 ± 27.34 | 4209 | 1.01 ± 0.02 | | 0j: WW control region | 0.03 ± 0.02 | 21.85 ± 0.86 | 6.98 ± 1.20 | 3.91 ± 0.64 | 3.46 ± 1.00 | 1.11 ± 0.82 | 23.77 ± 0.73 | 61.08 ± 2.19 | 57 | 0.93 ± 0.13 | # $\Delta \phi_{||}$ at Jet Veto, after $PT_{||}$, after $M_{||}$ cuts Plots at higher levels of Cutflow to increase statistics. Note: discrepancy at high $\Delta \phi_{II}$ μe background overestimated $R=0.85 \pm 0.05$ $R=1.00 \pm 0.14$ $R=1.07\pm$ $R=0.87 \pm 0.05$ $R=0.96 \pm 0.08$ $R=0.87 \pm 0.11$ ## M_{II} at Jet Veto, after PT_{II},M_{II} Cuts ### M_{II} at Jet Veto looks ok for the em, a bit worse for the me!! ## M_T at jet Veto, after PT_{II} and M_{II} cuts #### Note that M_T at Jet Veto is overpredicted, same as $\Delta \phi_{\parallel}$ at large $\Delta \phi$ # E_tmiss at Jet Veto, PT_{II}, M_{II} Cuts #### Some mismodeling in the 50-80 GeV bins # Try a new CR: M_{II} > 50 GeV | LC | OWPT 2012 DA | TA 12.7fb ⁻¹ (| CutWWCR50 | (ер | ι) | | | | | | |---|--|--|--|--|---|---|--|---|-------------------------------|--| | | Signal 125 GeV | ww | $WZ/ZZ/W\gamma$ | tī | Single Top | Z+jets | W + jets | Total Bkg. | Observed | Data/MC | | blinding lepton p_T OS leptons $m_{ff} > 12$, 10 GeV | 138.47 ± 1.15 21.04 ± 0.41 20.61 ± 0.39 20.27 ± 0.39 | 3258.67 ± 10.51
159.02 ± 2.32
158.29 ± 2.32
157.46 ± 2.31 | 1352.02 ± 14.27
235.64 ± 5.71
108.66 ± 3.96
101.44 ± 3.83 | 17720.87 ± 49.05
937.46 ± 11.27
934.91 ± 11.26
931.46 ± 11.24 | 1794.17 ± 20.65
92.13 ± 4.80
88.93 ± 4.59
88.73 ± 4.58 | 11398.36 ± 51.26
2282.45 ± 21.63
2249.18 ± 19.93
2246.39 ± 19.93 | 2523.02 ± 17.05
817.95 ± 7.05
508.76 ± 5.83
501.84 ± 5.79 | 38047.11 ± 77.87
4524.66 ± 26.57
4048.73 ± 24.50
4027.32 ± 24.45 | 38066
4246
3909
3887 | 1.00 ± 0.01
0.94 ± 0.02
0.97 ± 0.02
0.97 ± 0.02 | | Scale factors Z veto (for $\varepsilon \varepsilon, \mu \mu$)
Scale factors | 20.27 ± 0.39 | NF = 1.00
156.69 ± 2.30
NF = 1.00 | 101.44 ± 3.83 | | $\begin{array}{c} {\rm NF} = 1.04 \\ {\rm 91.89} \pm 4.74 \\ {\rm NF} = 1.04 \end{array}$ | 2246.39 ± 19.93 | 501.84 ± 5.79 | 4062.88 ± 24.67 | 3887 | 0.96 ± 0.02 | | $E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45,25~\mathrm{GeV}$ | 10.02 ± 0.28 | 89.26 ± 1.73 | 43.06 ± 2.63 | 632.27 ± 9.42 | 64.37 ± 3.93 | 348.09 ± 7.43 | 120.06 ± 2.96 | 1297.12 ± 13.34 | 1161 | 0.90 ± 0.03 | | Z validation region (incl) Top validation region (incl) | 20.27 ± 0.39
1.24 ± 0.11 | 157.46 ± 2.31
6.57 ± 0.51 | 101.44 ± 3.83 2.23 ± 0.54 | 931.46 ± 11.24
539.64 ± 8.56 | 88.73 ± 4.58 45.13 ± 3.19 | 2246.39 ± 19.93
23.35 ± 1.59 | 501.84 ± 5.79
20.83 ± 1.69 | 4027.32 ± 24.45
637.76 ± 9.46 | 3887
642 | 0.97 ± 0.02 1.01 ± 0.04 | | Scale factors 0j: jet veto 0j: $\Delta \phi \ell \ell, MET > 1.57$ | 5.08 ± 0.20 | $ NF = 1.00 \\ 54.31 \pm 1.36 $ | 30.95 ± 2.42 | $ NF = 0.87 \\ 9.95 \pm 1.07 $ | NF = 0.87
5.60 ± 1.08 | 219.98 ± 6.66 | 70.18 ± 2.00 | 390.97 ± 7.64 | 324 | 0.83 ± 0.05 | | 0j: p _{T,ℓℓ} >45,30 GeV | 4.05 ± 0.18 | 45.29 ± 1.24 | 23.79 ± 2.09 | 8.63 ± 1.01 | 4.81 ± 1.01 | 20.72 ± 2.81 | 43.70 ± 1.46 | 146.94 ± 4.24 | 145 | 0.99 ± 0.09 | | 0j: $m_{\ell\ell} < 50 \mathrm{GeV}$
0j: $\Delta \phi_{\ell\ell} < 1.8$ | $\frac{2.99 \pm 0.15}{1.87 \pm 0.13}$ | $ \begin{array}{c} 14.90 \pm 0.71 \\ 9.44 \pm 0.56 \end{array} $ | 16.46 ± 1.74 13.20 ± 1.58 | 3.50 ± 0.67
3.04 ± 0.62 | 0.53 ± 0.40
0.32 ± 0.34 | $^{12.00}$ \pm $^{2.56}$ $^{2.64}$ \pm $^{2.26}$ | 17.10 ± 0.94 5.68 ± 0.57 | 64.49 ± 3.40
34.32 ± 2.96 | 62
35 | 0.96 ± 0.13 1.02 ± 0.19 | | 0j: 0.75 · m _H < m _T < m _H | | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0 | nan ± nan
0.97 ± 0.02 | | 0j: WW control region | 9.70 ± 0.27
1.06 ± 0.09 | 99.00 ± 1.84
30.54 ± 1.02 | 65.73 ± 3.36
7.33 ± 1.15 | 15.13 ± 1.41
5.13 ± 0.76 | 7.11 ± 1.33 4.27 ± 0.93 | 1599.01 ± 18.06
8.72 ± 1.17 | 282.45 ± 4.23
26.60 ± 1.12 | 2068.43 ± 19.04
82.60 ± 2.54 | 2005
83 | 1.00 ± 0.11 | | | LOWPT 2012 DA | ΓΑ 12.7fb ⁻¹ C | CutWWCR50 | $(\mu \mathrm{e})$ | | | | | | | |---|-----------------------------|----------------------------------|---------------------|---------------------------------|-------------------------------|----------------------|---------------------|----------------------|------------|-----------------| | | Signal 125 GeV | ww | $WZ/ZZ/W\gamma$ | tī | Single Top | Z+jets | W+jets | Total Bkg. | Observed | Data/MC | | blinding | 119.01 ± 1.11 | 2965.50 ± 10.01 | 1481.56 ± 15.37 | 15499.90 ± 45.78 | 1584.67 ± 19.47 | 11165.81 ± 61.93 | 1936.12 ± 10.79 | 34633.57 ± 82.24 | 34925 | 1.01 ± 0.01 | | lepton PT | 18.44 ± 0.41 | 136.86 ± 2.12 | 393.97 ± 8.35 | 752.47 ± 9.97 | 82.21 ± 4.70 | 2300.32 ± 22.61 | 763.98 ± 5.53 | 4429.81 ± 27.16 | 4418 | 1.00 ± 0.02 | | OS leptons | 17.85 ± 0.37 | 136.65 ± 2.12 | 167.11 ± 5.28 | 748.99 ± 9.95 | 77.73 ± 4.39 | 2252.36 ± 20.38 | 459.21 ± 4.76 | 3842.06 ± 24.26 | 3956 | 1.03 ± 0.02 | | $m_{\ell\ell} > 12, 10 \; { m GeV}$ | 17.31 ± 0.37 | 135.52 ± 2.11 | 147.77 ± 4.88 | 745.81 ± 9.93 | 77.73 ± 4.39 | 2250.12 ± 20.37 | 452.32 ± 4.73 | 3809.27 ± 24.16 | 3927 | 1.03 ± 0.02 | | Scale factors Z veto (for $ee, \mu\mu$) | 17.31 ± 0.37 | $ NF = 1.00 \\ 134.86 \pm 2.10 $ | 147.77 ± 4.88 | NF = 1.04
772.38 \pm 10.28 | NF = 1.04
80.50 ± 4.55 | 2250.12 ± 20.37 | 452.32 ± 4.73 | 3837.93 ± 24.33 | 3927 | 1.02 ± 0.02 | | Scale factors | 100001000010000100001000000 | NF = 1.00 | | NF = 1.04 | NF = 1.04 | | | | 4000000000 | | | $E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45,25~\mathrm{GeV}$ | 8.52 ± 0.26 | 78.30 ± 1.60 | 64.21 ± 3.06 | 501.57 ± 8.23 | 54.98 ± 3.86 | 353.93 ± 8.00 | 154.87 ± 2.16 | 1207.85 ± 12.78 | 1108 | 0.92 ± 0.03 | | Z validation region (incl) | | 135.52 ± 2.11 | 147.77 ± 4.88 | 745.81 ± 9.93 | 77.73 ± 4.39 | 2250.12 ± 20.37 | 452.32 ± 4.73 | 3809.27 ± 24.16 | 3927 | 1.03 ± 0.02 | | Top validation region (in | :l) 1.00 ± 0.10 | 5.59 ± 0.45 | 2.56 ± 0.45 | 428.92 ± 7.49 | 39.80 ± 3.16 | 21.69 ± 2.98 | 13.17 ± 0.93 | 511.72 ± 8.73 | 545 | 1.07 ± 0.05 | | Scale factors
0j: jet veto | 4.40 ± 0.17 | $NF = 1.00$ 48.65 ± 1.26 | 48.59 ± 2.84 | $ NF = 0.87 \\ 6.50 \pm 0.80 $ | $\frac{NF}{3.80} = 0.87$ | 230.57 ± 6.79 | 107.33 ± 1.55 | 445.45 ± 7.75 | 379 | 0.85 ± 0.05 | | 0j: $\Delta \phi_{\ell\ell,MET} > 1.57$
0j: $p_{T,\ell\ell} > 45,30 \text{ GeV}$ | 3.50 ± 0.15 | 39.59 ± 1.13 | 36.89 ± 2.49 | 6.05 ± 0.76 | 2.96 ± 0.98 | 17.97 ± 1.74 | 76.01 ± 1.08 | 179.46 ± 3.63 | 166 | 0.93 ± 0.07 | | 0j: $m_{\ell\ell} < 50 \mathrm{GeV}$ | 2.61 ± 0.13 | 14.58 ± 0.69 | 25.72 ± 2.11 | 2.22 ± 0.50 | 1.00 ± 0.40 | 10.24 ± 1.23 | 29.14 ± 0.67 | 82.90 ± 2.70 | 70 | 0.84 ± 0.10 | | 0j: Δφρ < 1.8 | 1.54 ± 0.10 | 9.72 ± 0.56 | 22.23 ± 2.00 | 1.97 ± 0.48 | 0.96 ± 0.40 | 0.70 ± 0.21 | 10.17 ± 0.41 | 45.77 ± 2.22 | 41 | 0.90 ± 0.15 | | 0j: 0.75 · mH < mT < | | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0 | nan ± nan | | 0j: Z validation region | 8.43 ± 0.24 | 86.69 ± 1.69 | 102.03 ± 4.34 | 10.28 ± 1.07 | 5.62 ± 1.39 | 1647.84 ± 18.68 | 265.83 ± 3.35 | 2118.29 ± 19.62 | 2204 | 1.04 ± 0.02 | | 0j: WW control region | 0.89 ± 0.08 | 25.13 ± 0.90 | 11.16 ± 1.32 | 3.82 ± 0.57 | 1.96 ± 0.89 | 7.73 ± 1.23 | 46.87 ± 0.85 | 96.68 ± 2.43 | 96 | 0.99 ± 0.10 | ## WW CR (80,50) : $\Delta\Phi_{II}$ 0 jet #### Mismodeling at large $\Delta\Phi_{II}$ in e μ channel in both CR M_{II}>80 GeV M_{II}>50 GeV ## WW CR(80,50): M_T 0 Jet M_{II}>80 GeV M_{II}>50 GeV ### M_{II} in CR >80 and >50 M_{II}>80 GeV M_{II}>50 GeV ### Conclusions - 1. No excess is observed in the eµ channel in the blinded SR (p 2) - 2. Data-MC shape distributions disagree in the eμ channel - 3. The mismodeling at high $\Delta\Phi_{\parallel}$ is observed here as well (p 4,9) - 4. Two WW Control Regions (M_{II} >80 or >50) show similar mismodeling of the $\Delta\phi_{II}$ LOWPT RESULTS ARE SIMILAR TO THE NOMINAL ANALYSIS **EXCEPT FOR POINT 1** ## Backup Slides ### Backup Slides ### 2011 Data Excess Splitting the e-mu in ehi-mlow and mhi-elow showed that all of the excess is in events with a subleading muon. Total Excess: 28 +- 12 events (mostly in the eµ channel) ### Flavor Dependence of Excess The excess in the 2011 data is mostly in the ehi-mulow channel #### Cutflow for different flavors | Lepton channel | ee | μμ | eμ | all | | |----------------|-----------------|------------------------|----------------|----------------|-------------------| | | | Cut 11 | | | | | signal | 2.2 ± 0.2 | 5.1 ± 0.3 | 13.3 ± 0.9 | 20.6 ± 1.3 | | | Total Back | 159 ± 24 | 271 ± 33 | 770 ± 114 | 1201 ± 170 | | | observed | 144 | 263 | 828 | 1235 | | | | | Jet Veto | | | | | signal | 1.4 ± 0.1 | 3.3 ± 0.3 | 8.9 ± 0.8 | 13.6 ± 1.2 | | | Total Back. | 41 ± 9 | 80 ± 15 | 255 ± 63 | 376 ± 85 | | | observed | 43 | 81 | 282 | 406 | | | | $P_{T,ll}$ | > 45,30 GeV | * | | | | signal | 0.76 ± 0.08 | 1.6 ± 0.2 | 7.5 ± 0.7 | 9.8 ± 1.9 | 1 | | Total Back. | 9.7 ± 3.1 | 15 ± 2 | 90 ± 10 | 115 ± 14 | excess | | observed | 6 | 20 | 117 | 143 | O/COOO | | | Final Samp | ole, with $\Delta\Phi$ | < 1.8 | | | | signal | 8.9 ± 0.8 | 0.7 ± 0.1 | 1.6 ± 1.1 | 6.6 ± 0.6 | | | Total Back. | 9.3 ± 3.0 | 14.2 ± 2.3 | 73 ± 8 | 96 ± 11 | <pre>excess</pre> | | Observed | 5 | 19 | 100 | 124 | | No excess in ee, excess in both $e\mu$ and $\mu\mu$